[特邀报告]Application research of 3d parallel electrical method in site investigation of phosphogypsum stack
00
days
00
hours
00
minutes
00
seconds
00
days
00
hours
00
minutes
00
seconds

[特邀报告]Application research of 3d parallel electrical method in site investigation of phosphogypsum stack

Application research of 3d parallel electrical method in site investigation of phosphogypsum stack
编号:441 稿件编号:169 访问权限:仅限参会人 更新:2024-05-20 11:26:43 浏览:559次 特邀报告

报告开始:2024年05月31日 15:00 (Asia/Shanghai)

报告时间:20min

所在会议:[S3] Deep Underground Engineering and Energy Utilization » [S3-4] Afternoon of May 31st-4

暂无文件

摘要
Phosphogypsum, as an industrial solid waste, can lead to environmental pollution through the infiltration of its leachate into the groundwater system via subsurface flow pathways. Consequently, during the construction of phosphogypsum stacks, a detailed investigation of potential leakage pathways in the subsurface and surrounding areas is imperative. However, the traditional deployment of three-dimensional high-density electrical resistivity observation systems laid challenges.
Moreover, conventional resistivity data collection using standard instruments is time-consuming, particularly in realistically complex geological conditions, making it challenging to apply. Focusing on a specific phosphogypsum stacking site, this work integrates practical geological considerations and employs parallel electrical resistivity methods for data acquisition, obtaining a three-dimensional dataset within the observed area. Subsequently, three-dimensional electrical resistivity inversion imaging, incorporating topographic information, is employed for subsurface interpretation of the stacking site. A total of five anomalous zones were identified during the field survey, aligning with geological information revealed through borehole drilling.
Based on the 3D (three-dimensional) electrical resistivity inversion results and in conjunction with the actual geological conditions on-site, the resistivity values within the surveyed area were delineated. The overburden and water-bearing fracture zones exhibit lower resistivity, measuring less than 300 Ω·m. The moderately weathered limestone displays resistivity values ranging from 300 Ω·m to 1500 Ω·m, while the resistivity of intact limestone, fractured limestone, and overlying gravelly soil all surpasses 1500 Ω·m. This comprehensive investigation provides accurate guidance for the subsequent construction of impermeable curtains, aiming to prevent further environmental contamination.
关键字
Parallel electrical method , 3D electrical resistivity inversion , Pollution prevention, Geological anomaly, Geological survey
报告人
Guanqun Zhou
Hefei University of Technology

稿件作者
官群 周 School of Resources and Environmental Engineering, Hefei University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论

联系我们

投稿事宜:张老师
电话:0516-83995113
会务事宜:张老师
电话:0516-83590258
酒店事宜:张老师
电话:15852197548
会展合作:李老师
电话:0516-83590246
登录 注册缴费 提交摘要 酒店预订