[Oral Presentation]On-site Rapid Analysis of Pollutants in Water Based on Separation-Surface enhanced Raman scattering Combined Technology
00
days
00
hours
00
minutes
00
seconds
00
days
00
hours
00
minutes
00
seconds

[Oral Presentation]On-site Rapid Analysis of Pollutants in Water Based on Separation-Surface enhanced Raman scattering Combined Technology

On-site Rapid Analysis of Pollutants in Water Based on Separation-Surface enhanced Raman scattering Combined Technology
ID:315 Submission ID:315 View Protection:ATTENDEE Updated Time:2024-05-19 15:27:48 Hits:533 Oral Presentation

Start Time:2024-05-31 15:15 (Asia/Shanghai)

Duration:15min

Session:[S9] Environmental Pollution Control and Ecological Restoration » [S9-2] Afternoon of May 31st

No files

Abstract
With the rapid growth of the global population, agricultural and industrial activities have led to a significant increase in the levels of various organic pollutants in water, which has serious impacts on the environment and human health. Therefore, the development of new materials and technologies for effective detection and removal of pollutants in water has always been the focus of research. Based on this, we explored highly sensitive and rapid analysis methods for pollutants in water based on separation-surface enhanced Raman scattering (SERS). Covalent organic frameworks have great potential as adsorbents due to their tailorable functionality, low density and high porosity. However, fabrications of macroscopic objects are challenging but of great significance to give full play to its chemical functionality and porosity. Therefore, we synthesized a sulfonated COF-based adsorbent, namely covalent organic frameworks/carbon nitride/graphene oxide/ gold nanoparticles aerogel, by hydrothermal method. Firstly, graphene was introduced as a template to form a g-C3N4/GO heterojunction. COFs grow in situ along the heterojunction surface, and then Au NPs are further modified by electrostatic interaction. After freeze-drying, an aerogel with ultrathin porous structure was obtained. The aerogel exhibits excellent adsorption performance and can be used to selectively remove positively charged organic pollutants in water. Au NPs can form a “hot spot” region to enable in situ SERS detection of organic pollutants. In addition, the aerogel was used as photocatalytic materials for decomposing organic pollutants to generate nontoxic inorganic small molecules under visible light irradiation, and maintained good adsorption performance and SERS stability in 5 cycles. This method enables rapid removal of organic pollutants in water and highly sensitive sensing, providing an efficient approach for water environmental treatment.
 
Keywords
pollutants; efficient adsorption; degradation; SERS analysis
Speaker
Lulu Qu
professor Jiangsu Normal University

Submission Author
迎弟 张 江苏师范大学
国海 杨 江苏师范大学
陆陆 渠 江苏师范大学
Comment submit
Verification code Change another
All comments

Contact us

Abstract and Paper:Ms. Zhang
Tel:(0086)-516-83995113
General Affairs:Ms. Zhang
Tel:(0086)-516-83590258
Hotel Services:Ms. ZHANG
Tel:15852197548
Sponsorship and Exhibition:Mr. Li
Tel:(0086)-516-83590246
Log in Registration Submit Abstract Hotel